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Parametric controllability of certain systems of rigid bodies�
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Abstract

The concept of parametric controllability as applied to systems of rigid bodies is discussed. The topic of discussion is Langrangian
systems for which “unfreezing” of the parameters is possible such as, for example, the refinement of a model by taking account
of the small variability of the links assumed by rigid bodies in the first approximation. As has been shown, just taking account
of a small change in the parameters can ensure the controllability of a mechanism which was not controllable assuming rigidity
absolute of the links. Certain sufficient conditions are proposed for parametric controllability in invariant manifolds for objects with
cyclic coordinates. A two-link pendulum in the horizontal plane under the action of an internal moment (from the first link to the
second) is considered as an example. The effect of its mass inertial parameters on the controllability is investigated. The parametric
controllability of such an object in a manifold of zero angular momentum, due to the elastic pliability of the second link or the
oscillations of an additional mass on a spring along the second link, is demonstrated. An example of a parametrically controllable
planetary mechanism with slippage of discs is also considered.
© 2006 Elsevier Ltd. All rights reserved.

When modelling mechanical systems, the question arises of the effect of the degrees of freedom which are neglected
on the form of the motion. Examples are known when taking account of small elastic pliability in the links, a “small
amount of free play” in the construction of the links or slight variability of the rigid bodies (when the parameters are
“unfrozen”) leads to qualitative differences in the stability properties of the motion. The effect of such factors on the
controllability, which is understood in the traditional sense,1 is investigated below.

1. Auxiliary results

Natural Lagrangian systems are considered, that is, objects with a Lagrangian function

which is symmetric with respect to time reversal (t → −t), where q = (q1, q2 . . ., qn)T is the vector of the generalized
coordinates and A(q) is a positive definite inertia matrix. We will assume that the potential energy B(q) has a lower
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limit: B(q) ≥ 0, B(0) = 0 and that the equations of motion have the form

(1.1)

The control vector u = (u1, . . ., un)T satisfies the constraints |ui| ≤ ai, where ai are prespecified numbers (i = 1, 2,
. . ., n). In a special case, some of the quantities ai can be zero, that is, the number of degrees of freedom n can exceed
the number of controls. For example, if ai = 0 (i = 1, 2, . . ., n, i �= j), then system (1.1) “is controlled using a scalar input
uj”. Since the Lagrangian function can be periodic with respect to certain (“angular”) coordinates qi (suppose there
are r of them), we consider a configurational space M = Tr × Rn−r, where Tr is an r-dimensional torus. Then the phase
space TM = Tr × R2n−r. The notation (q, q̇) ∈ TM implies that the numerical values of the coordinates are taken from
the corresponding covering space Rr × R2n−r.

If the separatrix surface in TM, along which motion to a singular point occurs after a finite time, corresponds to the
feedback u = u(q, q̇), then the surface is denoted by �(u(q, q̇)). The set of equilibrium positions �0 = {(q, q̇) : q̇ =
0, ∂B/∂q = 0, u = 0} is non-empty, and we assume that the number of components of this manifold is finite.

The number of degrees of freedom can exceed the number of controlling actions. We shall rely on the results in
Refs. 2–4 in which the sufficient conditions for global controllability (that is, in the whole of the phase space TM)
were based on the symmetry properties of the equations with respect to time reversal and the local controllability in
the neighbourhoods of the equilibrium positions or steady rotation. Moreover, the stabilizability to these positions was
used, that is, the possibility of transferring the system from each point of phase space to the neighbourhood of a required
state, which may be as small as desired. The direct Lyapunov method in the theory of stability was invoked to prove
the stabilizability. The concept of a strong Lyapunov function was introduced in Ref. 6 in order to extend the well-
known Barbashin–Krasovskii theorem5 to the case of a cylindrical phase space, which is characteristic of pendulum
mechanisms. The traditional definitions of stabilizability and local and global controllability have been indicated in
Ref. 3 and, in the case of time-reversible systems (t → −t), global controllability is equivalent to null-controllability.1

We will formulate one of the results in Ref. 2 in the following form.

Assertion 1. Suppose that, in system (1.1), the potential B(q) is a strong Lyapunov function in M and that the sets,
specified by the conditions B(q) ≤ c (c > 0), are compact. Then,

1) if, in the case of free motion (u ≡ 0), the system does not admit of a particular solution q̇j ≡ 0 (excluding equilibrium
positions), then it is stabilizable with respect to an input uj(j ∈ 1, 2,. . ., n) in the manifold TM\�·(uj).

2) if, at the same time, local controllability with respect to the same input uj holds in the neighbourhoods of all points
(q0, 0) ∈ �0, then system (1.1) is globally controllable solely under the action of uj.

2. Preliminary discussions

We will now consider a classical example of a controllable system. Suppose a planar two-link pendulum outside a
gravitational field (Fig. 1) is modelled by weightless rigid rods of lengths l1 and l2 with point masses m1 and m2 on
the ends. The position of the system is specified by the angles � (measured from the central axis) and � (with respect

Fig. 1.
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to the first rod), that is, q = (�, �)T, q ∈ T2. The internal control moment u is bounded in front by a specified quantity:
|u| ≤ a.

Using the dimensionless parameters and dimensionless time

we obtain the reduced Lagrangian function and equation of motion (we omit the primes)

Here,

The first equation of motion gives the law of conservation of angular momentum

about the axis of rotation of the first rod.
The system is not globally controllable (in the whole of the phase space TM = T2 × R2) since combinations of

�, �̇, �̇, which endow the function p1 with another value are known to be inaccessible.
We now consider the important practical case when p1 = 0, which corresponds to an initial (or final) position of rest.

Then, for any control actions u(t), the system remains in the manifold

(2.1)

where

The equation in expression (2.1) is integrated in the form

(2.2)

where �0 and �0 are the initial values of the coordinates. The function

(2.3)

subject to the condition � < 1, is a monotonically increasing function. In the torus � × �, the form of the curve (2.2) is
determined by the “increase in the angles per period”. When �1 − �0 = 2�, we obtain

(2.4)

If the number k is rational, the curve in the torus is closed; otherwise it fills the torus compactly everywhere.
Every curve (2.2) from the manifold (2.1) is determined by the initial coordinates (�0, �0). Only those configurations

(�f, �f) which also satisfy relation (2.2) are accessible in the manifold � from this position.

Remark 1. A purposeful motion along the curve (2.2) is also feasible in the case of an additional condition of
optimality in the speed of response. It can be shown that, in the (�, �̇) plane, the phase-plane diagram of the optimal
synthesis is homeomorphic with the well-known case ÿ = �.7 The optimal motion consists of an “acceleration” (from
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the initial state (�0, �̇0)) and a “retardation” along the line of switching to the state (�f, 0). Then, at the end of the
motion (by virtue of the fact that p1 = 0), we also obtain �̇ = 0 and � = �f.

Actually, when account is taken of the equality p1 = 0, the energy of the system can be represented in the form

and, by virtue of the equations of motion, dE/dt = u�̇. For constant values of the control u = ±a, the phase curves

each have a common point with the straight line �̇ = 0. The branches of the curve with c = 0 constitute the line of
switching of the optimal synthesis and the number of switch-overs is no greater than one. This can be shown in the
coordinates

where, by virtue of the monotonicity of the function y(�), the inverse function � = e(y) exists and the equation of motion
takes the form

The form of the curve (2.2) in the torus � × � obviously depends on the mass-inertia parameters � and 	 of the
two-link device. The possibility (during the controlled motion) of changing their values should enable one to pass
from one curve to another, thereby linking the initial equilibrium position (�0, �0) and any required final equilibrium
position of the system (�f, �f) by a common trajectory.

Example. Suppose a single instantaneous change in the parameter 	 (for example, by “discharging of ballast” �m2)
is permissible in the case of the robot-manipulator (Fig. 1) with an internal moment |u| ≤ a. Assuming that the values
of 	1 = m1/m2 and 	2 = m1/(m2 − �m2) are specified, we will determine whether it is possible for the system to pass
in a finite time from an arbitrary position of rest (�0, 0, �0, 0) (when 	 = 	1) to any required position (�f, 0, �f, 0)
(when 	 = 	2) in the cylinder T2 × R2 by a single replacement of 	1 by 	2 (	1 < 	2).

In fact, the first and second segments of the required trajectory differ in the parameters b2 > b1 > 1 in Eq. (2.2) which
can be represented in the form

(2.5)

Assuming the number � to be fixed, we will investigate two possible cases.

The case (� ≤ 1). In this case, the relation �(�) (2.2) is monotonic and the coefficient k (2.4) increases as b increases:

Consequently, for sufficiently large n ∈ N, the continuous function [�(�, b1) − �(�, b2) + c] at the ends of the
interval � ∈ [−2n�, +2n�] takes values c ± [k(b1) − k(b2)]n� of different signs, that is, it vanishes for a certain value
of �. Therefore, in the covering space R2 (and this means also in the torus T2), the curve � − �(�, b1) = const drawn
through the point (�0, �0) inevitably intersects the curve � − �(�, b2) = const drawn through the point (�f, �f). We
denote the coordinates of their point of intersection by (�*, �*) (in the torus � × �, it may be non-unique). Then, from
an initial state of rest (�0, 0, �0, 0) when 	 = 	1, it is possible according to Remark 1 to reach the state (�*, 0, �*, 0)
(by means of an acceleration and retardation) and subsequently, when 	 = 	2, to pass (using a similar strategy) from
the state (�*, 0, �*, 0) to the state (�f, 0, �f, 0).
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The inevitability of the intersection of curves (2.5) when b = b1 and b = b2 also enables one (by replacing b1 by b2
at the intermediate position of rest (�*, 0, �*, 0)) to pass in the case of an admissible control |u(t)| ≤ a from any state
(�0, �̇0, �0, �̇0) ∈ � to any state (�f, �̇f , �f, �̇f ) ∈ � in a finite time.

This can be achieved, for example, in three stages. Having first calculated the values of �2, �2 at the end of the
“retardation” section

with the third stage we perform the “acceleration”

At the end of the first stage

the quantities �1, �1 become known and, in the second stage, it is therefore sufficient to join the states of rest (�1, 0, �1,
0) and (�2, 0, �2, 0) which have been found by a trajectory using the strategy considered above (with the intermediate
replacement of the parameter 	1 by 	2).

The case (when � > 1). In this case, when b = �, the function k(b)(−1 < k(b) < 0) has a unique minimum which is
equal to

√
1 − 1/�2 − 1. Infinitely many pairs of values b1 �= b2 therefore exist for which k(b1) = k(b2), that is, the two

trajectories (2.5) (when b = b1 and b = b2) emerging from a common point (�0, �0) in R2 again intersect at the point
(�0, �0 + 2�). The width of the domain enclosed between these curves is defined in the interval � ∈ [�0, �0 + 2�] as
max�|�|, where � = �(�, b1) − �(�, b2). From expressions (2.3) and (2.4), we obtain

The condition for an extremum d�/d� = 0 takes the form

By taking the quantities b1 and b2 sufficiently close to one another (with the same condition k(b1) = k(b2)), we
obtain a width � as small as desired. Then, the first trajectory � − Φ(�, b1) = const drawn through the point (�0, �0)
does not intersect the “second” trajectory � − �(�, b1) = const drawn through (�0 + � + 
, �0) (where 0 < 
 � 1) in
R2. On choosing (at the expense of b1 and b2) the value of k to be rational, it is possible to obtain a strip in the torus
T2 between the curves which is closed and does not fill the torus.

In fact, for each rational number k = −m/n (0 < m < n; n, m ∈ N), it is possible to set up a corresponding range of
values of �, calculated from the equation

with a variable small parameter � (0 ≤ � < �k < k + 1), where the quantity �k will be formulated below as a function of
�. The function

introduced in this way has a value of �, when � = 0, which corresponds to the conditions b1 = b2 and � = 0. On expressing
b1 and b2 (with the same condition k(b1) = k(b2)) in terms of k and λ(k, �) and substituting into the formulae for �i

(i = 1, 2), we obtain the function �(k, �) which is monotonic (in the domain 0 < � < � (1 + k)) for all k = const. The
function which is inverse to it reduces to the form
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The requirement that � < 2�/n (for the number of turns n along the coordinate � considered) can be ensured by the
condition

On mapping the set of rational numbers k ∈ ]−1, 0[ into the set of intervals �(k, �) (0 ≤ � < �k) using the method
described above, we obtain the unification of these intervals in the form of a domain ]1, ∞[. Then, for each �0 > 1,
suitable originals k0 and � exist for which the quantities b1 and b2 (which satisfy the condition k(b1) = k(b2) = k0 ensure
the inequality � < 2�/n0, i.e. the strip between the “first” and “second” curves, which is closed in the torus, will not
have self intersections.

Values of the parameters 	1 and 	2 therefore exist (before and after “discharging ballast”) for which a transition
from the point (�0, �0) to the point (�f, �f) is impossible in the general case if � > 1.

Thus, the transport problem of translating a planar two-link device from an arbitrary state of rest with a configuration
(�0, �0) to any specified state (�f, �f) when |u(t)| ≤ a by means of a single instantaneous change of the parameter 	1
to 	2 subject to the condition that � ≤ 1, always has a solution but does not have a solution for certain values of 	1
and 	2 when � > 1.

The controllability parameters (in the manifold p1 = 0) can be considered as being parametrically conditional, since
they depend very much on the mass-inertia parameters 	 and �.

3. A model of a two-component device with an additional degree of freedom

The idea of achieving controllability by varying the parameters of a “two-component device which is uncontrollable
with respect to u” (Fig. 1) leads, for example, to the following modification of this object (Fig. 2).

Suppose it is possible to move a point mass m3 on a spring without friction along the first link. By measuring its
position by the coordinate x3 from the end of the unstressed spring of length d, we obtain the distance from the fixed
hinge up to the mass m3 in the form d + x3. The oscillations of the point m3 will imitate the change in the mass-inertia
parameters of the two-component device over a known range, due to which its controllability properties are “improved”
(in the sense of the preliminary discussion). Note that the addition of a further pendulum (in a gravitational field) to
the first hinge, which models for example, partial filling of an internal cavity in the first link with a liquid, would be an
equivalent modification.

For simplicity, we will take a quadratic elasticity potential

where c3 is the stiffness of the spring. Retaining the previous notation (Section 2) for 	, �, u, a, t, we introduce the
additional dimensionless parameters

We then obtain

Fig. 2.
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for the reduced Lagrangian function, where q is the configuration vector and the non-zero elements of the matrix
A(q)={
ij(q)} (i, j = 1, 2, 3) have the form

We now write down the equations of motion of the system

(3.1)

where � = √
c/μ3 is the frequency of natural oscillations of the load m3 and p1 is the angular momentum of the system

about the axis of rotation of the first link; its constancy defines an invariant manifold in the phase space TM = T2 × R4,
in view of which the system is not globally controllable in TM using an input u.

We next consider the behaviour of the object in the manifold � = {q, q̇ : p1 = 0}, which contains, in particular,
all the possible equilibrium positions of the system. The aim of the subsequent discussion is to demonstrate the
controllability of system (3.1) in the manifold � under the action of a moment |u(t)| ≤ a (a is a specified constant), that
is, the possibility of passing from any initial state (q0, q̇0) ∈ � to any required state (qf , q̇f ) ∈ Γ in a finite time. Here,
we restrict ourselves to the condition � < 1, when the length of the second rod l2 exceeds the length l1 of the first rod.
In particular, this enables us to describe the manifold � by the condition

(3.2)

since it is guaranteed that 
12(�) = 1 + �cos� �= 0.
The dependence of the controllability properties on the numerical parameter � was seen in Section 2. In particular,

it was shown earlier in Ref. 3 that a planar two-link device outside a gravitational field is controllable by the action of
just a single external moment |u1(t)| ≤ a (a is a specified constant) subject to the condition � �= 1. This exception was
associated with the invariant manifold � ≡ �, when, for l1 = l2, the point m2 and the fixed hinge are superposed.

Further, for system (3.1) when � < 1, we shall rely on the possibility of particular solutions

(3.3)

where the constants � and x* are related by the condition

(3.4)

and the function �*(t) is determined from the first equation of (3.1)

(3.5)

Such a state can be ensured by the part u1 of the control action u = u1 + u2 by calculating it from the second equation
of (3.1) in the form

At the same time, from the equality

when account is taken of expression (3.5), we conclude that, since �̇ �= 0 (when � �= 0), then

(3.6)
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(R(�, x*) is a continuous function). In the interval � ∈ [0; 2�], for each value of x* (which depends monotonically on
�), we obtain

It follows from expression (3.6) that the quantity max�|u1| depends monotonically on �, that is, a value of �* exists
such that, when � ≤ �*, the constraint |u1| ≤ a/2 is guaranteed. Then, under the conditions of the procedure (3.3)–(3.6),
we assume

(3.7)

Consequently, when the first rod executes a uniform rotation and the load m3 is in relative equilibrium, the particular
solution (3.3) is possible for system (3.1) (subject to the condition that � < 1) with the control (3.6). This regime is
impossible when � ≥ 1.

The image point moves in the torus � × � according to Eq. (2.2) if we take

(3.8)

In other words, in the case of relative equilibrium of the load m3, the motion will be the same as in the case of a two-link
pendulum without a spring (Section 2) but with a “reduced” parameter

The curve in the torus will be closed if x* (together with �) is chosen such that the number k in equality (2.4) turns out
to be rational.

In order to investigate the controllability properties of system (3.1), we will use its dynamical subsystem (in �, �̇, x, ẋ)
obtained from condition (3.2). Then, the second momentum coordinate has the form

Eliminating �̇ in this way, we obtain the equations of motion

(3.9)

where G = G (�, x). Here, when u ≡ 0, there is an energy integral

(3.10)

We will now show that it is possible to translate system (3.9) by means of an admissible control |u| ≤ a (a is a
specified constant) from an arbitrary initial state (�0, �̇0, x0, ẋ0) to any required state (�f , �̇f , xf , ẋf ) in a finite time.

In the case of systems which are reversible in time (t → −t), global controllability is guaranteed in the case of null-
controllability1 when the object can be transferred, using an admissible control u(t), from any initial state (q0, q̇0) to the
state (0, 0). Here, the feasibility of the transition (q0, q̇0) → (0, 0) would follow, for example, from a combination of
local controllability in the neighbourhood of 0, 0 and stabilizability, that is, from the attainment of any �-neighbourhood
of the point (0, 0) (see Assertion 1). A special feature of system (3.9) being considered is the fact that there is no local
controllability in the neighbourhood of the equilibrium positions in the linear approximation. The following is therefore
proposed.

Remark 2. The global controllability of system (3.9) is guaranteed, if the system

1) is locally controllable in the neighbourhood of the solution (3.3)–(3.5),
2) is stabilizable to this state, that is, it is transferred (by means of an admissible control u(t)) in a finite time from an

arbitrary initial state to any �-neighbourhood of the solution (3.3)–(3.5).
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Actually, a combination of these conditions enables one to reach the manifold (3.3)–(3.5) from an arbitrary initial
state (�0, �̇0, x0, ẋ0). In view of the symmetry q̇ → −q̇, t → −t, the state �̇ ≡ −�, x ≡ x∗, � = −�∗(t) will also be
accessible in the case of a natural Lagrangian system. Hence, together with the motion

(where �̇1 = +�G(�1, x∗)), the “inverse” transition

will also be possible.
Since the values of �1, �̇1 are periodically repeated along the trajectory of the solution (3.3)–(3.5), the motion

will be guaranteed, that is, global controllability will occur.
Further, to prove conditions 1 and 2 (see Remark 2), we set up the equation in the form

We shall specify the function u1 in advance in the form of the feedback u1(�, �̇, x, ẋ) such that, in the manifold
(3.3)–(3.5), it is identical to the function (3.6), and choose the “free” component u2, guided by the aim of reaching the
manifold (3.3)–(3.6). We now consider conditions 1 and 2 separately.

Condition 1. It is well known1 that it is sufficient to discover local controllability in the linear approximations, that
is, by linearizing system (3.9) in the neighbourhood of system (3.3)–(3.6).

Introducing the notation

we obtain the following linear equations for the perturbations

(3.11)

where

a2i(t) are smooth functions of �*(t) (i =1, 2, 3, 4) and the functions G(�, x), ∂G/∂�, 
11 (�, x) are calculated using
relations (3.3)–(3.5).

The new control w = u2/�(�∗(t), x∗) is “equivalent” to the old control u2 from the point of view of controllability:
since the function � > 0 has an upper limit, the existence of an appropriate function w(t) also guarantees the existence
of the required function u2(t).

Introducing the vector z = (�, �̇, �, �̇)
T

, we can represent system (3.1) in the form

(3.12)
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It is well known8 that the existence of an instant of time t* (in the finite interval of time of the motion being
considered) for which rank K(t*) = 4 is a sufficient condition for the linear unsteady system (3.12) be the controllable.
The controllability matrix K = (K1, K2, K3, K4) is composed of the columns

In the given case, the determinant of the matrix K is simplified by subtracting from some columns a linear combination
of the other columns. After expanding the determinant, for all t we obtain

(3.13)

that is, rank K = 4, and this means that there is local controllability with respect to the input u2 in the case of system
(3.9) in the neighbourhood of system (3.3)–(3.6).

In writing out the last link in the chain of equalities (3.13), we have taken into account the fact that

since

along the “reference” solution (3.3)–(3.6).

Condition 2. We will use the direct Lyapunov method to prove stabilizability and consider the function

(3.14)

Taking account of the energy integral (3.10), we write the derivative of the function (3.14), by virtue of the equations
of motion (3.9), in the form

(3.15)

where the property

is used in the course of the transformations.
In the space TM of the vectors (�, �, �, �̇), the sets Mc = {�, �, �, �̇ : V ≤ c} are compact for any value of �.
The subspace of the vectors y = (�, �, �̇) is denoted by TM1. Then, in view of the easily verified property

we have V(�, y) ≥ V(0, y) = W(y), where W(y) is a connected Lyapunov function6 in TM1. In particular, it follows from
the equality W = 0 that y = 0. Hence, in order to establish asymptotic stability in the large in the sets from TM, it is
sufficient5,9 to prove that, by virtue of Eq. (3.9) (by an appropriate choice of the control u(t)), we obtain dV/dt ≤ 0 and
that, apart from y = 0, there are no integral trajectories in the set dV/dt ≡ 0.

If the first component of the control u = u1 + u2 is taken in the form

(3.16)



O.R. Kayumov / Journal of Applied Mathematics and Mechanics 70 (2006) 527–548 537

then, in the objective set (3.3)–(3.5) (where ẋ ≡ 0, ẋ ≡ x∗, �̇ ≡ −G�), this function is identical to the function (3.6)
since

Eq. (3.15) takes the form dV/dt = u2�. This means that it is sufficient to choose a smooth function u2 which is
bounded (from the condition that |u2| ≤ a/2) and opposite in sign to � (for example, u2 = −(a/�) arctg �) in order to
obtain dV/dt ≤ 0.

Here, the condition dV/dt = 0 only arises when � = 0, that is, �̇ ≡ −G� which is only possible along the solution
(3.3)–(3.6), where y = 0.

Hence, the control which has been found u = u1 + u2 will ensure stabilizability. In order simultaneously to satisfy the
constraint |u1| ≤ a/2 in the case of the function u1 (3.16), the value of � can be chosen to be “fairly small”, depending
on the actual initial state (q0, q̇0) (where q = (�, x)T) for which it is required to prove the feasibility of the transition
(q0, q̇0) → (0, 0).

The procedure for choosing � is as follows:

a) max�V (q0, q̇0) = c1 is calculated for a specific vector 0 ≤ � ≤ �* in the compactum (q0, q̇0) for the smooth
Lyapunov function (3.14),

b) c = max{c1, c2} is chosen, where c2 = max� V(0, 0),
c) the value of

is found in the compactum Mc = {�, �, �, �̇ : V ≤ c}, where the function U(�, x) is taken in the form of (3.15),
d) finally,

is chosen.

The constraint |u| ≤ a is thereby guaranteed for a control u = u1 + u2 with components in the form

This control transfers the system from the state (q0, q̇0) to any �-neighbourhood of the solution (3.3)–(3.6) when
� = �1. The control giving a transition from the state (0, 0) to the neighbourhood of the “symmetric” system (for which
� = −�1) will also be bounded.

In view of the fact that �1 �= 0, condition (3.13) is satisfied in both neighbourhoods, that is, there is local controllabil-
ity. The motion (q0, q̇0) → (0, 0) therefore exists (see Remark 2). The null-controllability of subsystem (3.9) which has
been proved is equivalent to its global controllability, that is, to the possibility of transferring the subsystem by means
of an admissible control |u| ≤ a in a finite time from any state (�0, �̇0, x0, ẋ0) to any required state (�f , �̇f , xf , ẋf ).

Remark 3. It can be shown that, when � < 1 (that is, the second link is longer than the first), system (3.1) with three
degrees of freedom is globally controllable in the manifold p1 = 0. This object (Fig. 2) can be transferred, for example,
from any position of rest to any required state (with zero angular momentum p1) by means of an admissible control
|u| ≤ a (a is a specified constant) in a finite time.

The proof follows in Section 6 (Example 2).
Note that the controllability (in the manifold p1 = 0) of the “modified” model of a two-link device, which has been

revealed, holds for as small a value of the mass m3 of the additional load as desired whereas, when m3 = 0, it was absent.
This suggests that there are possible qualitative differences in the controllability properties of mechanical models of
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one and the same actual object when their details are described to different extents. Hence, in certain cases, by taking
account of a small change in the parameters (the insignificant variability of a “rigid body”, the flexibility of a link
in a construction, etc.) one can ensure the controllability of a mechanism which would not be controllable on the
assumption that the links were absolutely rigid. In Section 4, this property will be called parametric controllability.

4. The concept of parametric controllability

Suppose that, in a dynamical control system, the state vector is specified in a finite-dimensional phase space TM
and consists of two parts: in the form of state vectors y ∈ TM1 (of the simplified model; dim y = n) and z ∈ TM2 (of
additional coordinates, refining the model). The control vector u is chosen from a specified bounded domain U ⊂ Rm,
where 2m ≤ n in the case of the mechanical systems being discussed. The small parameter � > 0 characterizes the
closeness of the two models.

If the velocities of the additional degrees of freedom tend to zero when � → 0, the “refined” object can have the
form of a regularly perturbed system

(4.1)

If, however, these velocities tend to infinity when � → 0, the system

(4.2)

will be singularly perturbed. In both cases, the simplified model (when � = 0)

(4.3)

which symbolizes, for example, the absolute rigidity of the bodies (compared with their small variability), can be set to
correspond to the object (4.1) (or (4.2)). Here, the solutions of the systems being compared for values of the parameters
� = 0 and 1 
 � > 0 are assumed to be close, that is, we assume that the conditions of Poincaré’s theorem are guaranteed
in the case of system (4.1) and the conditions of Tikhonov’s theorem10 in the case of (4.2) (where z = 0 corresponds to
the equality F(y, z, 0) = 0, that is, z0 = 0 is chosen in Eq. (4.3)).

The controllability properties of the “flexible” model (4.1) (or (4.2)) and the “rigid” model (4.3) may differ.

Definition. We say that system (4.1) (or (4.2)) is parametrically controllable in the set P1 ⊂ TM1 if, in the case of a
� > 0 which may be as small as desired, it is possible to transfer the system from any state y0 ∈ P1 to any other required
state yf ∈ P1 by means of an admissible control in a finite time and it is impossible to do this in the general case when
� = 0.

The controllability property which has been introduced is considered to be “parametric” in the same sense as, for
example, parametric resonance in the oscillation theory, that is, it is caused by an “unfreezing” the parameters. The
additional equations (for z), which distinguish the “flexible” system from the “rigid” system, actually describe the
change in the mass-inertia characteristics which, when � = 0, take constant values.

Note that parametric controllability is not identical to “weak controllability”10 since, in the general case, the vector
u is not multiplied by the coefficient �. Systems (4.1) (or (4.2)) are only “weakly controllable” in a figurative sense,
since the controls are bounded by quantities which may be as small as desired. Among these units, “parametrically
controllable” units are additionally distinguished not because of the absence of an input action in the simplified model
(when � = 0) but in view of the properties of the intrinsic dynamics: a “rigid” system is controllable in the case of
actions which may be as large as desired and a “flexible” system is controllable in the case of actions which may be as
small as desired.

5. The sufficient conditions for the parametric controllability of system (1.1) with a cyclic coordinate

According to the definition of parametric controllability (Section 4), its recognition implies a comparison of two
close models of a mechanical unit of which the “rigid” model (with the smaller number of degrees of freedom) will
be uncontrollable, unlike the “flexible” model. The cause of the uncontrollability of the rigid model could be, for
example, the existence of a cyclic coordinate (we shall call it q1) for which ∂L/∂q1 = 0, a1 = 0. The conservation
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law p1 = ∂L/∂q̇1 = const defines the invariant manifold � ⊂ TM. We will now consider this case in greater detail,
representing the vector q in system (1.1) in the form q = (q1, xT)T, where x = (q2, q3, . . ., qn) such that the inertia matrix
A and the potential B will depend solely on x. Using Routh’s function R = L − q̇1∂L/∂q̇1, we obtain the dynamical
subsystem

(5.1)

in the space (x, ẋ).
In this case, the set of states of rest will be:

The case when p1 = 0, which corresponds to motion with an initial (or final) equilibrium position, is of practical
importance. We will next ascertain under which conditions system (1.1) will be controllable in this manifold � ⊂ TM,
that is, it can be transferred from any state (q0, q̇0) ∈ � to any other required state (qf , q̇f ) ∈ � in a finite time.

We separate out the first row of the n × n inertia matrix A(x), eliminating the left (first) element from it, dividing the
remaining part of the row by it, and denoting the resulting (n − 1)-vector by �(x) = (�1, �2, . . ., �n−1)T. The invariant
manifold p1 = 0 is then described by the equation

(5.2)

For a rigid system, the configurational vector (q1, sT)T will have a dimensional k < n and each coordinate of the vector
s is encountered among the coordinates of the vector x. The remaining n − k coordinates of the vector x correspond
to additional degrees of freedom and take constant values on changing from the flexible model to the rigid model for
which the law of conservation of momentum is written (by analogy with Eq. (5.2)) in the form

(5.3)

where the vector �(s) = (�1, �2, . . ., �k−1)T is obtained from the first row of the (k × k) inertia matrix of the rigid
system using the same method as for �(x).

The controllability properties of the systems in the zero momentum manifold � (which is defined, in the case of the
rigid model, in the form (5.3) and, in the case of the flexible model, in the form (5.2)) may differ and depend, as will
be shown, on the properties of the matrices G = ∂�/∂x and N = ∂�/∂s.

Assertion 2. Suppose system (1.1) with a small parameter � has a cyclic coordinate q1 to which the conservation law
(5.2) corresponds (when � > 0) or the conservation law (5.3) corresponds (when � = 0). At the same time, suppose that,
in the case of the dynamical subsystem (5.1), the domain of null-controllability is identical to the whole of the phase
space (x, ẋ). Then, if NT = N, GT �= G, system (1.1) is parametrically controllable in the manifold (5.2).

Proof. We will demonstrate the controllability of the flexible system (5.1), (5.2), that is, the feasibility of a transition
from an arbitrary point (q10, q̇10, x0, ẋ0) to any required point (q1f , q̇1f , xf , ẋf ) if both satisfy condition (5.2).

Actually, by virtue of the global controllability of subsystem (5.1), an admissible control

can be found to which the motion (q10, q̇10, x0, ẋ0) → (r1, 0, 0, 0) in the phase space TM of system (1.1) corresponds
with a certain finite value r1 of the coordinate q1. The controllable transition

can also be found to which the “symmetric” motion

corresponds in inverse time (t > −t).
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It remains to demonstrate the feasibility of the transition

or of the transition which is equivalent to it (by virtue of the cyclic nature of the coordinate q1)

To be specific, we will put r2 − r1 = �r > 0 and, in the phase space TM of system (1.1), we will consider the
attainability set K(T)1 from the point (0, 0, 0, 0) during a time T, which is chosen to be sufficiently short in order that
the domain of the corresponding motions when t ∈ [0, T] should be simply-connected. The projection of K(T) onto
the phase subspace (x, ẋ) will be a non-empty set (by virtue of the controllability of subsystem (5.1)) Since the set
of admissible controls is convex, the set K(T) is compact, convex and depends continuously on T (Ref. 1, p. 78). Its
boundary ∂K(T) intersects the line l = {q̇1 = 0, x = 0, ẋ = 0} at the point with the coordinate q1 = r.

The inequality r �= 0, which is proved indirectly, holds.
We shall assume that the coordinate q1 is equal to zero at the end of each trajectory starting at the point (0, 0, 0, 0)

and ending on the line l. By virtue of the local controllability of system (5.1), a cone of controls with a dimension of 2
(n − 1) at the initial point (0, 0) will correspond to the set of such trajectories in the space (x, ẋ). Writing Eq. (5.2) in
the form dq1 = −�T(x)dx, we obtain

for any closed contour (0, 0) → (x, ẋ) → (0, 0). This means that, in the simply-connected domain of motions being
considered, the vector field (�1, �2, . . ., �n−1) is potential (Ref. 11, p. 335). The system of equalities

which is equivalent to the equality GT = G, which contradicts the condition, follows from this. This means that r �= 0.
In view of the symmetry of system (1.1) with respect to t → −t, to be specific, we can put r > 0.
Since the set K(T) depends continuously on T, a T* ≤ T and a certain controlled motion

is found for each value of r* (where 0 ≤ r* ≤ r). This enables us to make the transition

after m + 1 stages (where m ≤ �r/r ≤ m + 1), during which the first m will be of the same duration T and the last one
takes a time T*, corresponding to the magnitude of r* = �r − mr. Thus, a motion

is found in the space TM which proves the controllability of the flexible system (1.1) in the manifold (5.2). By virtue
of the equality NT = N, the conditions for the vector field (�1, �2, . . ., �k−1) to be a potential field

are satisfied here.
The existence of the potential function F(q1, s) = 0 makes the configurations (q1f, sf), for which F(q1f, sf) �= 0,

inaccessible. This means that the rigid system (5.3) is not controllable in the manifold (5.3) as is required.
Note that a link between the controllability of a dynamical system and the non-integrability of an auxiliary differential

equation, obtained by the projection of a vector field, has been described earlier in Ref. 12. The difference from the
proposed Assertion 2 lies in the fact that the non-integrability of Eq. (5.2) in such a case12 would be a necessary
but not a sufficient condition. Hence, the main burden in establishing the controllability of system (1.1) falls on the
special properties of a natural Lagrangian system: satisfying the conditions of Assertion 1 replaces verification of the
non-integrability of a certain multidimensional dynamical subsystem.

We also note that, in the case of Assertion 2, only an “angular” coordinate can occur as the cyclic coordinate q1 in a
real mechanical system since, in the case of a “distance” q1, the condition p1 = 0 is usually integrated (in terms of the
“motion of the centre of mass of the system”).
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6. Examples of singularly perturbed systems (4.2)

Example 1. We will now show that the system (Fig. 2) considered in Section 3 is parametrically controllable in the
invariant manifold � of zero angular momentum if it is assumed that � = 	3. Since the global controllability of the
dynamical subsystem (3.9) has already been proved in Section 3, it remains (by virtue of Assertion 2) to consider the
matrices G = ∂�/∂x and N = ∂�/∂s. In this case,

Hence

whence it follows that GT �= G. Since the matrix N of the rigid system is a 1 × 1 matrix, we have NT = N. According
to Assertion 2, the system (Fig. 2) is parametrically controllable (in the mentioned manifold �) if m3 = 0 (Fig. 1)
corresponds to the rigid system.

Example 2. Suppose that, in the planar two-link pendulum being considered, there is again a unique control, that
is, a bounded internal moment u which acts “from the first rod to the second rod”. We will assume that |u| ≤ a,
where a is a specified constant. In addition to the rigid model (in which the links OA and AB are assumed to be
absolutely rigid), a flexible model is considered in the simplest form when the second rod AB is made up from two
absolutely rigid parts (with lengths l2 and l3), which are joined by a cylindrical hinge with a spiral spring of high
stiffness c (Fig. 3). The first rod OA (of length l1) is assumed to be an absolutely rigid body in both models. For
simplicity, we will assume that all the links are weightless and that their masses m1, m2 and m3 are concentrated
in the hinges. The flexible model has a configuration q = (q1, xT)T, q ∈ T2 × R), where q1 is the angle of the first
rod measured from the fixed axis x = (x1, x2)T , x ∈ T × R, x1 is the angle of the second rod measured from the
first rod, and x2 is the angle of elastic deviation (deformation of the spring) from the unstressed axis of the second
bar.

In the rigid model, the vector of the generalized coordinates (q1, s1)T ∈ T2, where s1 = x1.
We now consider the motion of the flexible system, introducing the dimensionless parameters and dimensionless

time

(we will henceforth omit the primes). In the reduced Lagrangian function

Fig. 3.
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the elastic potential energy B(x) = 1/2cx2
2. The positive definite, symmetric 3 × 3 inertia matrix A(x) has the elements

(6.1)

where

The coordinate q1 is cyclic, and the angular momentum about the axis of rotation of the first rod

is therefore conserved.
Next, we consider the case when p1 = 0, which corresponds to an initial (or final) state of rest. Condition (5.2),

where n = 3, � = (a12, a13)T/a11 and a11(x) > 0, is satisfied in this invariant manifold. Routh’s function is represented
in the form

and the elements of the symmetric, positive definite 2 × 2 matrix �(x) = {�ij(x)} are expressed in terms of the cofactors
Aij of the elements aij of the matrix A(x):

(6.2)

The equations of motion of the flexible model therefore include the kinematic condition (5.2) and the dynamical
subsystem (5.1), where

and a is a specified number.
We will now demonstrate the global controllability of this system in the space (x, ẋ), relying on Assertion 1. In the

neighbourhood of an arbitrary state of rest

the linearized equation of motion in the notation y = �(x0)(x − x0) takes the form

(6.3)

For the controllability of system (6.3), it is sufficient8 that the condition

is satisfied.
It follows from relations (6.1) and (6.2) that

(6.4)

Hence, the condition detK > 0 is guaranteed, for example, when cosx1 = 0, that is, in the neighbourhoods of the states
of rest

(6.5)

(with mutually perpendicular rods OA and AB) the flexible model is locally controllable.
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The stabilizability of the system to an equilibrium state (6.5) when k = 0 is ensured by the component
u1 = −(a/2)sin(x1 − �/2) of the control u = u1 + u2, |u2| ≤ a/2. On adding u1 to the potential forces, we obtain the
reduced potential

as a connected Lyapunov function6 in the space T1 × R1 of the variables (x1 − �/2) and x2, and all of the sets B1(x) ≤ c1
(c1 > 0) will be compact.

We will now show that the equations of motion (5.1) and (5.2) when u2 ≡ 0 and the actions of the “potential force”
u1 do not allow of the particular solution ẋ1 ≡ 0 (excluding the equilibrium positions (6.5)).

In fact, suppose ẋ1 ≡ 0. Then, the case when sin(x1 − �/2) ≡ const �= 0 is impossible since, as a consequence of
the condition u1 ≡ const �= 0, it would be at variance with the equilibrium between the moments of all of the forces,
including d’Alembert’s inertial force, with respect to the point A.

Assuming that sin(x1 − �/2) ≡ 0, we obtain u1 ≡ 0. Then, in the free motion (when u2 ≡ 0), the potential energy
B(x) will be bounded, and the instant of time t = t1 is therefore found at which ẋ2 = 0, and this means that q̇1 = 0 (in
view of the assumption that ẋ1 ≡ 0 and by virtue of (5.2)). Hence, when t = t1, we obtain an instantaneous state of rest
q̇ = 0 for which some of the components in Lagrange’s equations disappear:

The first two equations of this system are then written in the form

Note that, when the values

are substituted into the right-hand side of equality (6.4), the function �12 = f(x2) will be even. The total energy of the
system is constant and, in the states q̇ = 0, is equal to the elastic potential energy. This means that the maximum and
minimum deformations x2 in the instantaneous states of rest differ solely in sign and, for one of them, it is found that
f(x2) �= 0, that is, detA1 �= 0. In this state, we not only obtain that ż = 0 but, also, z̈ = 0 which corresponds to a condition
of rest of the whole system. Consequently, the particular solution ẋ1 ≡ 0 is only possible in the equilibrium positions
(6.5). According to Assertion 1, the flexible system (5.1), (5.2) is globally controllable in the space (x, ẋ).

Asymmetry of the matrix G = ∂�/∂x, that is, satisfaction of the condition

can be observed by direct calculations even in the linear approximation in the neighbourhood of the configuration
x1 = �/2, x2 = 0. In this case, the matrix N = ∂�/∂s for the rigid system is a 1 × 1 matrix. Consequently, the conditions
of Assertion 2 are satisfied in the example considered, that is, there is parametric controllability in the manifold p1 = 0.
When account is taken of elastic pliability, the two-link pendulum (Fig. 3) can be transferred by means of a bounded
internal moment in a finite time from any state of rest into any other required state of rest.

Note that Example 2 corresponds precisely to the case of a singularly perturbed system (4.2), which clearly manifests
itself in the equations by making the replacement x2 = ��, where � = 1/c is a small parameter.

7. Example of a regularly perturbed system (4.1)

Suppose the system (Fig. 4) with three degrees of freedom and a configuration q = (�1, �2, �3)T consists of continuous
homogeneous discs (of mass m2 and m3 and with radii R2 and R3) and a pole OA (a homogeneous rod of mass m and
length l). The construction is located in the horizontal plane (outside a gravitational field) and allows of slipping of the
discs. All the angles are measured anticlockwise. There is no friction at the hinges O and A, and the Amonton-Coulomb
law is obeyed at the point K where the discs touch: Ff ≤ fN, where we assume that N is a known constant. The control
action is an internal moment M(t) which acts from the rod OA to the disc with its centre at A. In the investigation
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Fig. 4.

of the controllability properties, we put |M(t)| ≤ M0, where M0 is a prespecified quantity which is less than all the
subsequently calculated “characteristic” moments in the dynamical system.

When there is no slipping, the coupling force Fa ≤ fN ensures the kinematic relation

If, however, the slip rate

is non-zero, the friction slip force will be

(7.1)

Note that the condition ṡ ≡ 0 (motion without slipping) will be the result of the “infinitely fast” alternation of the
value of the function sign(ṡ). At the same time, the function, which is calculated using Filippov’s rule13 and is equivalent
to fNsign(ṡ(t)), is identical to the Coulomb coupling force Fa ≤ fN. Hence, in the general case, it is possible to compare
the equations of motion, assuming there is slipping, by taking the friction force in the form of (7.1) beforehand. Using
the dimensionless variables and dimensionless time

we obtain the reduced kinetic energy

and the equations of motion

(7.2)

where

Since there are no external moments about the axis O, the angular momentum
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is conserved, that is, the system remains all the time in the invariant manifold p1 = const. We then investigate the
controllability with respect to an input u(t), keeping �1 and s1 as the independent variables. Introducing the notation

in the manifold p1 = const, we obtain the motion of a system with two degrees of freedom

(7.3)

where � and � are the reduced angular velocity of the rod OA and the slip rate of the discs. We impose a specific
constraint |u| ≤ a on the control, assuming it to be as small as desired including when a < k�/2.

Two types of motion are possible in the case of system (7.3):

A. In the case of an initial slip rate �(0) �= 0, the object passes in a finite time into a state � = 0 since, by virtue of
system (7.3), the derivative of the function V = |�| with respect to time will be

B. By virtue of the inequality a < k�, when �(0) = 0, conditions for the infinitely rapid alternation of the sign of the
function sign � arise, since � > 0 ⇒ �̇ < 0, � > 0 ⇒ �̇ < 0. At the same time, the equivalent right-hand side of
the second equation of (7.3), calculated using a well-known procedure,13 corresponds to a friction coupling force
ku(t) which doe not exceed the maximum force according to the Amonton-Coulomb law.

As a result, within the manifold p1 = const there is an invariant submanifold which is specified by the condition
ṡ = 0 (rolling without slipping) which the system cannot abandon for any admissible control. Hence, the system is not
controllable in the space (�̇1, ṡ), and this also means in the space (�̇1, �̇2).

We next complicate the model of a planetary mechanism (Fig. 4) by making the mutual pressure between the discs
dependent on the angular velocity of the rod OA (in view of its longitudinal deformability, for example). Suppose
� = �(�) > 0, where the function �(�) is a smooth, even and monotonically decreasing function when � > 0 and an
asymptotically decreasing function: � > 0 when � → 0. In the case of small deformability of the rod, We can assume
that �̇ = �f (�)�̇, where d�/d� = �f(�) and � is a small parameter. Then, the flexible model

(7.4)

which corresponds to a regularly perturbed system of the form of (4.1), can be treated together with the rigid model
(7.3) (where � = const). Strictly speaking, this correspondence is only formal if the relation � = �(�) is represented as
a “first integral” in a system with an additional degree of freedom �, assuming that the different initial values �(0) (due
to precompression of the deformable rod OA) are constructively possible.

We will now investigate the controllability of system (7.4) in the space of the variables (�, �) when � > 0. As in the
case of system (7.3), the relation

(7.5)

holds here which, when k = 1, gives the equality �̇ + �̇ = 0 for any u(t). It can be shown that the case m3R3 = m2R2
corresponds to the condition k = 1. With such a combination of parameters, systems (7.3) and (7.4) are not controllable
in the manifold p1 = const.

We next consider the case when k < 1, that is, when m3R3 < m2R2. Integrating system (7.4) for the value u = +a
separately in the half-planes � > 0 and � < 0, we obtain the set of solutions which is represented in Fig. 5. Here, by
virtue of the properties of the function �(�), numbers b2 > b1 > 0 exist such that �(b2) = a, �(b1) = a/k. On “splicing
together” the solutions on the boundary � = 0 of the half-planes inside the interval |�| < b1 (where the inequality
a < k�(�) is satisfied), the conditions for a “sawtooth” state (� > 0 ⇒ �̇ < 0, � < 0 ⇒ �̇ > 0) are obtained, that is, a
state of pure rolling.

For the case when u = −a, a family of solutions in the (�, �) plane is obtained from a family of solutions shown
in Fig. 5 by replacing the direction of the � and �-axes by the opposite axes since system (7.4) is invariant under
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Fig. 5.

the replacement u → −u, � → −�, � → −�. If the constraint a is replaced by a smaller value, the behaviour of the
solutions is not qualitatively changed. Only the abscissae b2 and b1 of the characteristic verticals increase, that is,
the range over which rolling occurs is extended and there is an increase in the angular velocity � under steady-state
conditions.

Note that, for the global controllability of system (7.4) in the space (�, �), the null-controllability1 of system (7.4)
and the null-controllability of the time-reversed t → −t system in the form

(7.6)

is sufficient.
In fact, any two points (�0, �0) and (�f, �f) can then be joined by a trajectory (�0, �0) → (0, 0) → (�f, �f).
The null-controllability of system (7.4) is proved, for example, by the following strategy for the motion from an

arbitrary point (�0, �0). If �0 �= 0, then, when u = −asignv, the system passes after a finite time into a state � = 0 since,
by virtue of system (7.4), the derivative of the function V1 = |�| with respect to time will have the form

If, however, �0 = 0, then, from the point (�0, 0), it is possible to reach the point (0,0) after a finite time by means of a
control

In view of the conditions for a “sawtooth” state, here

By virtue of system (7.4), for the function V2 = |�| we therefore obtain

(7.7)

The null-controllability of the time-reversed system (7.6) is proved by the following method of moving from an
initial point (�f, �f). If �f = 0, it is possible to reach the point (0, 0) after a finite time by choosing a control

Since �̇ = 0 follows from the equality �̇ = −u(1/k − 1) and Eq. (7.6), then

So equality (7.7) is satisfied. Henceforth, time reversal of the “sawtooth” state is carried out by a preliminary
replacement of the function sign(·) (with an infinitely rapid alternation of the sign) by an equivalent function using
Filippov’s rule13.

If �f �= 0, then a transition in the set � = 0 has to be accomplished in a different manner for the cases |�f| > b2 and
|�f| ≤ b2.
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The case (|�f| > b2). Choosing a control u = �(�f) sign�, we transfer a point in the (�, �) plane along the vertical
� = �f (sign �̇ = 0) on the straight line � = 0. In view of the equality �̇ = −(1 − k)�(�)sign�, we obtain

Having reached the straight line � = 0, we now use the strategy u = a1sign�.

The case (|�f| ≥ b2). By choosing a control u = −asign�f, (for which �̇ = −(a + �(�))sign�), we reach the vertical
� = −b2 (if �f > 0) or � = b2 (if �f < 0). Here,

i.e. the coordinate � does not change sign. Having reached the vertical |�| = b2, it is possible to move along it when
u = asign � and, then, along the straight line � = 0 when u = a1sign� to the point (0,0).

Thus, when k < 1 (that is, when m3R3 < m2R2), it is possible to transfer system (7.4) from any state (�0, �0) to any
other state (�f, �f) after a finite time by choosing an admissible control |u| ≤ a, where a is a number which may be as
small as desired. Unlike system (7.3) (where � = const.) controllability here is ensured by the possibility of emerging
from a state of pure rolling into a state of slipping of the discs due to a change in the parameter � (�).

It can be shown that, when k > 1 (that is, when m3R3 < m2R2), system (7.4) is uncontrollable. The family of its
solutions when u = + a (Fig. 6) differs from the family for k < 1 (Fig. 5) in the order of the arrangement of the verticals
|�| = b1 and |�| = b2 (where �(b2) = a, �(b1) = a/k) since b2 < b1 already by now. As before, the family of solutions
for u = −a differs from the family for u = +a by the replacement � → −�, � → −�. On the one hand, there is null-
controllability here, that is, the attainment of the point (0,0) after a finite time from an arbitrary state (�0, �0) (using
the same strategy as in the case when k < 1). On the other hand, from the point (0,0) it is only possible to reach a point
on the � axis, and points of the sector BAC (Fig. 6) or points of the sector which is symmetric to it about the centre 0.
Actually, by virtue of system (7.4), motion from the point (0,0) is only possible under “sawtooth” conditions. When
u = +a, it will reach the point � = −b1 and, when u = a3 < a, it continues “more to the left” (to the point � = −b3, where
�(b3) = a3/k). At the same time, BAC is the boundary of an oriented manifold,14 that is, motion from its points can only
occur along the sector or along the boundary. At each point of the curve AB, the normal vector n = (a − k�, a − �)T

makes a non-acute angle with the velocity vector � = (−u(t) + �, u(t) − k�)T (since n·� = �(k − 1)(u − a) ≤ 0 for any
control u(t)). This means that system (7.4) is not globally controllable when k ≥ 1.

Hence, when k < 1, system (7.4) is parametrically controllable in the space (�, �). Consequently, subject to the
condition m3R3 < m2R2, the planetary mechanism (Fig. 4), using an internal moment M(t) which may be as small as
desired, can be transferred in the space (�̇1, �̇2) from any state to any other state due to the longitudinal flexibility
of the rod OA, which changes the character of the slipping of the discs. This is made impossible when the rod OA is
absolutely rigid.

Fig. 6.
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